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A pesticide fate and transport model, SPEC, was developed for assessing Soil-PEC (Predicted Environmental Concentrations in 
agricultural soils) for pesticide residues in upland field environments. The SPEC model was validated for predicting the water 
content and concentrations of atrazine and metolachlor in 5-cm deep soil. Uncertainty and sensitivity analyses were used to 
evaluate the robustness of the model’s predictions. The predicted daily soil water contents were accurate regarding the number of 
observation points (n=269). The coefficient of determination (R2) and Nash-Sutcliffe efficiency (NSE) were equal to 0.38 and 0.22, 
respectively. The predicted daily concentrations of atrazine and metolachlor were also satisfactory since the R2 and NSE statistics 
were greater than 0.91 and 0.76, respectively. The field capacity, the saturated water content of the soil and the Q10 parameter 
were identified as major contributors to variation in predicted soil water content or/and herbicide concentrations. ​ © Pesticide 
Science Society of Japan
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Introduction

Pesticides have been commonly used in agriculture since the 
second half of the twentieth century.1,2) The widespread use of 
pesticides, however, has resulted in drift, leaching, and the run-
off of pesticide from target crops to off-target areas which can 
aversively impact the environment.2) Indeed, agriculture has 
been reported as the main source of groundwater contamination 
and numerous monitoring studies have highlighted the presence 
of pesticides in agricultural soils and surface and ground bodies 
of water.3–5) In Japan, the persistence of pesticides in agricultur-
al soils is evaluated in accordance with the test guidelines pre-
scribed by the Ministry of Agriculture, Forestry and Fisheries6) 
in limited conditions or simple scenarios. Meanwhile, the Min-
istry of Health, Labor and Welfare announced new standards 
for Maximum Residue Limits (MRLs) for pesticides in food and 
food additives (Positive List System) in 2003.7) In the so-called 
Positive List System, MRLs of 0.01 ppm were assigned for all 
of the registered combinations of crops and pesticides that had 
been previously neglected. These low MRLs have raised con-

cerns about the increased probability of exceeding the MRLs in 
crops. Indeed, in agricultural fields where crop rotation is used, 
the residues of pesticides applied to the previous crop may be 
taken up by the next crop depending on the persistence and up-
take characteristics.

To conduct realistic assessments of pesticide residues in soil 
for the purpose of adapting to the new regulations, a model sim-
ulation could be one practical alternative to pesticide monitoring 
and experiments that are often expensive and time consuming. 
By taking into account the major processes involved in the envi-
ronmental fate of pesticides (sorption, degradation, leaching, vol-
atilization, and runoff), models can be used for pesticide regis-
tration, mitigation, risk assessment, and screening purposes.8–10) 
Modeling approaches vary in complexity and can be classified as 
deterministic or stochastic models with two subcategories, mech-
anistic and functional.11) Models based on simple lumped param-
eters are limited to the relative ranking of hazardous chemicals 
but have the potential to be used for preliminary risk assessment. 
In contrast, models based on distributed parameters are more 
comprehensive in the level of detail and can account for the het-
erogeneity of the environment. In practice, however their use is 
limited due to impractical data requirements.2)

In Japan, the development of pesticide models for investigat-
ing the fate and transport of pesticides applied to lowland rice 
paddy fields has been reported.12–17) However there is not yet a 
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pesticide fate and transport model that simulates the behavior 
of pesticides applied to Japanese upland agricultural soil. This 
could be due to the necessity of validating models through test-
ing against high-quality field data sets.9) The aim of this research 
was thus: (1) to develop a pesticide fate and transport model, the 
SPEC model, (2) to evaluate the predictions of the model using 
field monitoring data and, and (3) to conduct uncertainty and 
sensitivity analyses of the SPEC model.

Materials and Methods

1.  Model description
The SPEC model was designed to assess the Soil-PEC (Predicted 
Environmental Concentrations in agricultural soils) of pesti-
cides. The model, coded in Visual Basic for Application in MS 
Excel, is a lumped parameter, one-dimensional, field scale, and 
daily time-scale model. The properties of the soil layers are as-
sumed to be homogeneous; a maximum of two soil layers can 
be defined in the model while a maximum of three successive 
applications of pesticide can be scheduled. The depth of the soil 
layers is defined by the user. Groundwater flow or recharge is 
not considered in the model. Then, the soil water content and 
pesticide concentrations are calculated successively, from top to 
bottom. The SPEC model does not simulate the subsurface lat-
eral flow, macropore flow, bypass flow, or tile drainage. Fig. 1 
shows the current conceptual SPEC model and the various hy-
drological and pesticide fate and transport processes considered 
by the model. The SPEC model estimates water runoff, leaching, 
and associated pesticide loading. The Soil Conservation Service 
(SCS) curve number technique developed by the USDS is used 
to estimate runoff whereas infiltration is determined by using a 
storage routing methodology. Such a scheme is often referred to 
as “tipping bucket” in the literature.18) As compared with other 
pollutant fate and transport fate models (PRZM, HYDRUS, 

MACRO), SPEC development focuses on having minimum 
input parameter requirements while maintaining physically 
based processes. The mass balance equation used by the SPEC 
model to calculate the amount of water in the soil layers is: 
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	 ⋅ ⋅ ⋅=, ,10i j j b i jWC depth ρ θ  	 (2) 

where the subscripts i and j specify the day and the soil layer of 
the variables. To clearly display the processes that are considered 
in soil layers 1 and 2 in Eq. (1), the subscript j was explicitly re-
placed by the soil layer number (1 or 2). WCi+1,j and WCi,j are the 
water contents expressed as water depths (using Eq. (2)) for day 
i+1 and i of the soil layer j (mm), respectively; Raini is the amount 
of rainfall that occurred during day i (mm), INFi,1 and INFi,2 are 
the amount of infiltration on day i from soil layers 1 and 2 (mm), 
respectively; ETi,1 and ETi,2 are the amounts of water removed 
from soil layers 1 and 2 (mm) due to evapotranspiration; depthj 
is the depth of the soil layer j (cm); ρb is the bulk density of the 
soil (g cm−3); and θi,j is the volumetric water content of soil layer 
j for day i (cm3/cm3). The methodology implemented to calculate 
each process is detailed in the next section while the processes 
considered to simulate pesticide fate and transport including pes-
ticide loss through percolation, runoff, and biochemical and pho-
tochemical degradations are presented in Section 3.

2.  Field-scale hydrological processes
2.1.  Infiltration

The daily infiltration of water is related to the current water con-
tent of the soil and the soil’s ability to hold water. Water infil-
trates from a soil layer to the soil layer below if the water content 
of the soil layer exceeds the field capacity of that layer and the 

Fig.  1.	 Conceptual hydrological and pesticide fate and transport processes considered by the SPEC model in a bare soil, upland field. Plain arrows repre-
sent the hydrological processes while dashed arrows characterize the pesticide fate and transport processes.
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layer below is not saturated. The amount of water available for 
infiltration in a soil layer is therefore given by: 

	 , ,max(0, )i j i j jWCX WC FC−=  	 (3) 
where WCXi,j is the drainable volume of water through infiltra-
tion in soil layer j on day i (mm), and WCi,j and FCj are the water 
content and field capacity at iteration i of soil layer j (mm), re-
spectively. Next, the amount of water that actually moves from 
one soil layer to the soil layer below is calculated the storage 
routing methodology19): 

	
, ,

Δ
1 exp j

i j i j
j j

t Ksat
INF WCX

SAT FC
 − ⋅

−  − 
=  

	
(4)

 
where INFi,j is the amount of water that infiltrates from soil layer 
j to the underlying soil layer at iteration i (mm), Δt is the length 
of the time step (h), Ksatj is the saturated hydraulic conductivity 
for layer j (mm/h), SATj is the saturated water content of layer j 
(cm3/cm3), and the other parameters are as previously defined.

2.2.  Surface runoff
Pesticide losses through surface runoff depend on the amounts 
of available pesticides in the soil surface, their chemical prop-
erties, and the intensities of rainfall and runoff.20) In the SPEC 
model, surface runoff is only computed for the topsoil layer, 
using the SCS curve number procedure. The SCS curve method 
is an empirical method developed through more than 20 years 
of studies involving rainfall-runoff relationships across the 
USA.21) The method was developed to take into account differ-
ent categories of land use and soil type. While the SCS curve 
method was reported to be appropriate for Japanese soil condi-
tions on a watershed scale, there have been few reports regard-
ing its application on a field scale.22) The SCS curve number 
equation is defined as23): 
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where Runoffi,1 is the runoff amount generated at time i by the 
topsoil layer (mm), Si is the retention parameter of the soil on 
day i (mm), and Ia is the initial abstraction which includes sur-
face storage, interception and infiltration prior to runoff (mm). 
For runoff to occur, the condition Raini>Ia must be met. In the 
SPEC model, Ia was approximated as 0.2S as it is commonly re-
ported in the literature.19) The curve number of the soil is related 
to the retention parameter of the soil Si, as illustrated in Eq. (6): 
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where CNi is the curve number for day i of the top soil layer 
(dimensionless). Three moisture conditions are defined in the 
SCS curve number method: dry (CN1), average (CN2), and wet 
(CN3). CN2 is required as a parameter input; an appropriate 
value can be extracted from the literature for various combina-
tions of land use and soil type.19,23) Note that these CN values are 
recommended for a 5% slope; if the slope of the field is different, 
the CN number must be adjusted. 

	
adjust

3 2
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(7)
 

where CN2adjust is the CN2 value adjusted for slope and slp is the 
average slope of the field (%). CN1 and CN3 are respectively the 
lowest and highest boundaries of the CN value. They are evaluated 
once, at the beginning of the simulation, using Eqs. (8) and (9): 
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(8)

	 3 2 exp(0.00673(100 2))CN CN CN−=  	 (9) 
CN1 and CN3 remain constant during the whole simulation and 
can be seen as properties of the soil. The retention parameter (Si) 
varies depending on the daily moisture of the soil and is re-evalu-
ated at each computation iteration using the following equation: 

	
max
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where Si is the retention parameter at time i (mm), Smax is the 
maximum value the retention parameter can achieve on any 
given day (mm), WCi is the soil water content of the soil layer 
(mm), Wres is the water residue of the soil layer (mm), and w1 
and w2 are shape coefficients. Smax can be calculated from Eq. (5) 
by replacing CNi with CN1. Once the retention parameter of the 
soil for the day is known, the value of the daily curve number 
can be calculated by rearranging Eq. (6): 

	

25400
254i

i
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(11)
 

where CNi and Si are the curve number and the retention pa-
rameter for day i (mm), respectively. In practice, the method is 
implemented as follows: first, the CN1 and CN3 of the soil are 
computed (Eqs. (8) and (9)). Then, every computation iteration, 
S, is calculated using Eq. (10), and the amount of runoff is evalu-
ated using Eq. (5).

An option to cancel runoff has been implemented in the 
model. Indeed, during field experiments conducted to validate 
the model, borders were installed between fields to avoid the po-
tential cross-contamination of pesticides. As a result the surface 
runoff of each plot was confined within that plot.24) When the 
“no-runoff ” option is used, water that was supposed to be lost 
due to water runoff is routed to infiltration therefore increasing 
the amount of infiltrating water. Note that, in the case of irriga-
tion, the amount of irrigation water was added to the amount of 
precipitation as input water.

2.3.  Evapotranspiration
Two options have been implemented in the SPEC model regard-
ing evapotranspiration (ET). The first option is used when no 
data are available. A constant daily value is used throughout the 
simulation. The second option uses the Penman-Monteith equa-
tion to predict daily evapotranspiration (ETc). The procedure for 
calculating all variables can be found in Allen et al.25)

Since ETc is computed by assuming that the plant had opti-
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mum soil water conditions, the actual evapotranspiration of the 
field must be adjusted to reflect current field conditions. The ac-
tual amount of water removed from the two soil layers by evapo-
transpiration is proportional to the depth of the soil layers and is 
calculated using Eq. (12): 

	

1
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1 2
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1 2
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where ETi,1 and ETi,2 are the actual evapotranspiration losses 
at day i from soil layers 1 and 2 (mm), respectively, WCi,1 and 
WCi,2 are the amounts of water held in soil layers 1 and 2 (mm), 
respectively, FC is the soil field capacity (mm) of the soil layer, 
and depth1 and depth2 are the depths of soil layers 1 and 2 (cm), 
respectively．

3.  Pesticide fate and transport
Pesticide is introduced in the model by scheduling a pesticide 
application. The user is required to input the date and the rate 
pesticide application. Then, the fate and transport of the pesti-
cide in the field are simulated by considering various pesticide 
degradations, loss of pesticide by surface runoff, and pesticide 
transport through vertical percolation in and out of the soil lay-
ers. Consequently, the equation used to predict pesticide con-
centrations in the two soil layers is: 

	
,1 1,1 ,1 ,1 ,1 ,1

,2 1,2 ,1 ,2 ,2

i i i i i i

i i i i i
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−

−

− − − −
− −

=
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(13)

 

where Mpi,1 and Mpi,2 are the mass of pesticide in soil layers 1 
and 2 at time i (mg), respectively, Mpi−1,1 Mpi−1,2 are the masses 
of pesticide in soil layer 1 and 2 at time i−1 (mg), respectively, 
Mrunoffi,1 is the mass of pesticide lost through runoff from the 
topsoil layer at time i (mg), and Mperci,1 and Mperci,2 are the 
masses of pesticide lost through percolation at time i by soil lay-
ers 1 and 2 (mg), respectively. Mphotoi,1, is the mass of pesti-
cide loss through photodegradation in the topsoil layer at time 
i (mg), and Mbioi,1, Mbioi,2 and are the masses of pesticide loss 
trough biochemical degradation at time i (mg), in soil layers 1 
and 2, respectively.

3.1.  Pesticide transported by surface runoff
The mass of pesticide loss from the soil top layer through water 
runoff is calculated by: 

	
1

,1 ,1i i
d

Cs
Mrunoff Area Runoff

K
⋅=  

	
(14)

 

where Csj is the pesticide concentration in soil layer j (mg/kg), 
Kd is the soil adsorption coefficient of the pesticide in the soil (L/
kg) and the other parameters are as previously defined. The soil 
adsorption coefficient of the pesticide in the soil is related to the 
soil organic content, Oc (%). The relation is given as: 

	 100d oc
Oc

K K=  
	

(15)
 

where Koc is the soil organic-water partitioning coefficient of the 
pesticide (L/kg) and Oc is the percentage of soil organic carbon 
(%). Note that the transport of pesticide sorbed to soil particles 
with surface runoff is not considered in the current model.

3.2.  Pesticide transport via vertical percolation
In the SPEC model, the amount of pesticide that is transported 
with percolating water is a function of infiltration: 

	
, ,

j
i j i j

d

Cs
Mperc Area INF

K
⋅=  

	
(16)

 

where Mperci,j is the mass of pesticide loss from soil layer j at it-
eration i (mg), INFi,j is the amount of water that percolates from 
the layer j (mm), and all other variables are as previously de-
fined. The mass of pesticide loss by percolation by soil layer j is 
added to the mass of pesticide in the soil layer j+1 (Eq. (13)).

3.3.  Pesticide biochemical degradation
Pesticide biochemical degradation was describe by a first-order 
equation: 

	 , 10i j j b bio jMbio depth Area ρ k Cs⋅ ⋅ ⋅ ⋅ ⋅=  	 (17) 

where Mbioi,j is the mass of pesticide loss from soil layer j at it-
eration i by biochemical degradation (mg), ρb is the bulk density 
of the soil (g/cm3), and kbio is the first-order rate constant of the 
pesticide biochemical degradation in the soil (1/day). The first-
order rate constant degradation is calculated from the half-life of 
the pesticide’s biochemical degradation: 

	

ln(2)
bio

bio
k

HL
=  

	
(18)

 
where HLbio is the pesticide half-life of biochemical degradation 
(day).

The influence of temperature on the degradation rate can be 
accounted for in the temperature data as: (1) two average tem-
peratures with their corresponding periods, (2) daily average 
temperatures, and (3) hourly average temperatures. Using the 
first option, two degradation rates are computed and used dur-
ing the appropriate periods. In contrast, when using options 
2 and 3, the degradation rate can change on a daily or hourly 
basis. The equation used to adjust the half-life of a pesticide due 
to temperature is given as26): 

	
1( 25)/10

10
t

bio biorefk k Q −=  	 (19) 
where kbioref is the reference pesticide’s half-life at 25°C (day), 
Q10 is the change of half-life given a 10°C change in temperature 
(unitless), and t1 is the temperature at which the half-life of the 
pesticide must be calculated (°C).

3.4.  Photochemical degradation
Photodegradation was reported to be one of the most destruc-
tive pathways for pesticides after their release into the environ-
ment.27) This process in soil surfaces is only significant if there is 
no foliage covering the ground. In the SPEC model, this process 
is only considered in 2-mm depth of the topsoil layer. To accu-
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rately determine the loss of pesticide by photodegradation, the 
level of solar radiation reaching the ground must be known. This 
is evaluated using the following equation which was originally 
developed for paddy fields15): 

	
- -

-
-

UVB a UVB b
R ab

UVB a

R R
f t

R
−

= ⋅  
	

(20)
 

where RUVB-a and RUVB-b are the daily UV-B radiation above and 
below the plant canopy (MJ/m2), respectively, fR-ab is the slope 
of the fitted line obtained from the relative difference of the ra-
diation above and below the plant canopy that accounts for the 
light attenuation by the growing crop, and t is the time (day). 
The UV-B radiation reaching the ground can be calculated as: 

	 - - -(1 )UVB b US S a R abR f R f t− ⋅=  	 (21) 

where fUS is the fraction of the UV-B radiation over the solar 
radiation, and RS-a is the solar radiation below the plant canopy. 
When no plants are growing in the field (bare soil condition), 
fR-ab is equal to 0 and the UV-B radiation above and below the 
plant canopy is identical. The final equation used to compute the 
mass of pesticide loss by photodegradation is: 

	 ,1 - 12i UVB b photoMphoto Area R k Cs⋅ ⋅ ⋅ ⋅=  	 (22) 

where Mphotoi,1 is the mass of pesticide loss by photodegrada-
tion (mg), kphoto is the first-order rate coefficient of photochemi-
cal degradation with respect to cumulative UV-B radiation 
(m2M/J), and all other parameters are as previously defined. The 
first-order rate coefficient of photochemical degradation with 
respect to cumulative UV-B radiation can be calculated from the 
half-life of pesticide photodegradation. 

	

ln(2)
photo

photo US
k

HL f Solar⋅ ⋅
=  

	
(23)

 
where HLphoto is the photochemical degradation half-life of the 
pesticide (day), and Solar is the average solar radiation mea-
sured during the experiment duration (MJ/m2/day). While de-
termining kphoto experimentally at a site is preferable for accu-
rately predicting the photodegradation of pesticides, Eq. (22) 
can be used to derive kphoto from existing pesticide databases.

4.  Field experiments
We attempted to validate the SPEC model so as to predict: (1) 
soil water content and (2) the concentrations of two herbicides: 
atrazine and metolachlor. All observed data were acquired over 
a two-year monitoring period (2013–2014) at the experimental 
farm of Tokyo University of Agriculture and Technology (TUAT 
experimental farm), Tokyo, Japan. Details of the experiment can 
be found elsewhere.24) Briefly, the field was divided into three 
experimental plots that were surrounded by plastic borders bur-
ied approximately 10 cm in the ground. Note that the borders 
prevented surface runoff from the plots. The texture of the soil 
was identified as clay-loam while its taxonomic order is andi-
sol. It contained 29.6% sand, 33.4% silt, and 23.4% clay. Some 
characteristics of the soil are reported in Table 1. Atrazine and 

metolachlor were applied twice, on June 10, 2013 and December 
6, 2013 to the whole surface of the plots. The commercial formu-
lation of the herbicides (Geza non gold® Syngenta, Tokyo, Japan) 
was diluted with distilled water and applied at the recommended 
rates of 771.3 and 732 g a.i./ha for atrazine and metolachlor, re-
spectively. Neither herbicide was applied to the field prior to the 
experiment and no crops were grown on the plots. In addition, 
no irrigation water was applied to the field during the entire du-
ration of the experiment.24) Precipitation, soil temperature, and 
soil moisture contents at 5.0 cm deep were recorded hourly.24) 
Soil samples were collected at a depth of 5 cm at specified in-
tervals from the three plots using soil cores 5 cm in diameter. 
A composite sample was created for each plot by mixing three 
samples taken randomly from each plot. The procedure used to 
clean up the composite samples and extract the pesticide can be 
found in the literature.23)

5.  Model parameterization
The input parameters used for predicting soil moisture and con-
centrations of atrazine and metolachlor at the TUAT experi-
mental farm are reported in Table 1. Soil layers 1 and 2 were 
1 cm and 4 cm deep, respectively. The data used to parameter-
ize the model were taken from the literature or database. When 
no data were available, the inputs were calibrated.21,24,28,29) The 
curve number value used in the simulation was extracted from 
the tables provided by the SCS Engineering Division and is ap-
propriate for a 5% slope with bare soil (no crop residue) and a 
soil with moderate infiltration rate.19) Previous analysis indicated 
that the curve number method was applicable for the andisol 
soil plot scale with bare soil. The method was, however, sensitive 
regarding the initial moisture content of the soil.30) Neverthe-
less, further validation of the method of application in Japan for 
other combinations of land cover and soil conditions is neces-
sary. Hourly monitored precipitation and temperature data were 
used for the simulation. Daily average solar radiation as well as 
minimum, maximum, and average daily air temperature data 
was downloaded from the AMEDAS weather station located 
about 500 m from the monitoring site in Fuchu City, Tokyo 
(Japan).31) These data were used to calculate the daily amount of 
evapotranspiration from the TUAT experimental farm.25)

6.  Sensitivity and uncertainty analyses
The possible application of any model and its validation pro-
cedures are largely determined by the model’s sensitivity.11) In-
deed, input parameters are variable which can be attributed to 
(1) protocols and analytical methods and (2) spatial variability 
that occurs naturally.11) Since input parameters must be esti-
mated whenever data are missing, characterizing and ranking 
input parameters as to their influence on model predictions are 
absolutely necessary to correctly interpret a models’ output. Un-
certainty and sensitivity analyses were performed by applying 
Monte Carlo (MC) techniques to the SPEC model. To noticeably 
recognize the effects of uncertainty included in input parameters 
on the predicted soil water content and pesticide concentrations, 
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two MC scenarios were created. The first MC scenario (MC sce-
nario 1) included only input parameters related to soil proper-
ties while the second MC scenario (MC scenario 2) consisted of 
input parameters related to pesticide characteristics.

The water residue (Wres), the saturated hydraulic conductivity 
(KSat), the saturated water content (SATj) and the field capac-
ity (FCj) of the soil were included in the first MC scenario for 
a total of four investigated input parameters. Three parameters 
were considered in the second MC scenario: the photodegrada-
tion half-life (HLphoto), the Q10, and the soil organic-water parti-
tioning coefficient of the pesticide (Koc). To avoid redundancy, 
the kbio was not included in the analysis, since it is nested with 
the Q10 parameter (Eq. (18)). In addition, accurate kbio data from 
laboratory experiments (unpublished data, Table 1) were avail-
able for both atrazine and metolachlor. The sample size used for 
the MC simulations was 250 for both soil and pesticide param-
eter scenarios. This sample size proved sufficient for a pesticide 
fate and transport model in the case of pesticide applied in rice 
paddies.32) Uniform distributions were given to all investigated 
parameters. All parameters except the Q10 parameter were al-
lowed to vary a maximum of ±10% from the values used in the 
deterministic scenario presented in Table 1. The range of the Q10 
parameter was 1.0 to 2.2. A value of 1.0 indicates that tempera-
ture has no effect on the degradation half-life. A value of 2.2 was 
recommended for use when no site data was available.26) Note 
that the maximum range of the saturated water content of the 
soil was to 1.0 as values higher than 1.0 are not physically pos-
sible. For evaluating model response the soil water content and 
herbicide concentrations, target outputs were selected 24 days 
after the herbicide applications. This corresponds to the half-

life period of appreciable herbicide concentrations; therefore the 
data set is representative of each season.

To visualize the evolution of output uncertainty every com-
putation step, the 95th percentiles of the predicted soil water 
content and herbicide concentrations were plotted together with 
the predictions of the deterministic scenario.

The method used to measure input sensitivity was reported 
previously.32,33) The method relies on a stepwise regression anal-
ysis that computes standard rank regression coefficients (SRRCs) 
for the predictors (inputs) that have the most significant influ-
ence on the predictions (outputs). By ranking the input param-
eters by absolute values of SRRCs, the model’s most sensitive 
parameters can be highlighted.

7.  Model evaluation
The model’s accuracy regarding the predictions of soil water 
content and herbicide concentrations was evaluated using sta-
tistical indices. The coefficient of determination (R2) which 
describes the degree of collinearity between the simulated and 
measured data was reported to be extremely sensitive to ex-
tremely high values (outliers) and insensitive to additive and 
proportional differences between model predictions and mea-
sured data.34) Therefore to appropriately interpret the accuracy 
of a model, it is necessary to report additional statistical indices 
such as the Nash-Sutcliffe efficiency (NSE). NSE is a normalized 
statistic that compares the measured data variance to the relative 
magnitude of the residual variance.35) NSE statistic range between 
−∞ and 1.0, the latter being the optimal value. Positive values 
are generally viewed as acceptable levels of performance. In 
contrast, negative values indicate that the mean of the observed 

Table  1.	 List of the input parameters used to simulate the soil water content and the concentrations of atrazine and metolachlor in TUAT experimental 
farm

SPEC model inputs Abbreviations Units Atrazine Metolachlor

Field
Organic carbon Oc % 6.9524)

Bulk density ρb g/cm 0.524)

Saturated water content SAT cm3/cm 0.9524)

Water residue Wres cm3/cm 0.10a

Saturated hydraulic conductivity Ksat Cm/h 10.80a

Curve number CN — 8623)

Slope slp % 524)

Field capacity FC cm3/cm 0.4024)

Pesticide
Date of applications — Date 10 June 2013, 6 December 2013
Application rate — g/ha 771.324) 732.524)

Partitioning water organic coefficient Kd L/kg 10028) 12024)

Half-life biochemical degradation HLbio day 23.528) 24.728)

Half-life photo-degradation HLphoto day 10029) 199a

Average solar radiation Solar kJ/m 1424) 14a

Q10 Q10 — 1.3524) 1.4224)

Note: a Input was calibrated.
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value is a better predictor than is the simulated value.36)

The root mean square error (RMSE) is an error statistic be-
cause it indicates error in the units of the variable of interest 
(cm3/cm3 for the soil water content and mg/L for herbicide 
concentrations).36) A value of 0 indicates a perfect fit. Having 
an RMSE value of less than half the standard deviation of the 
measured data was reported to be appropriate.37) The coefficient 
of residual mass (CRM) indicates if the model overestimate or 
underestimate the observations, a perfect fit is indicated by a 
value of 0. Positive values indicate that the model has a tendency 
to underestimate the data while negative values indicate that the 
model tends to overestimate the observations.38) The equations 
used to compute the different indices have been commonly re-
ported in the literature.36,38)

Results and Discussion

1.  Model validation for the prediction of soil water content
During field monitoring, the daily volumetric average of the soil 
water content varied from 0.34 to 0.40 cm3/cm3 during the sum-
mer and winter seasons, respectively.24) There is a clear corre-
lation between precipitation and increased the soil water con-
tent (Fig. 2). In major precipitation events, soil water content 
increased sharply, since runoff amounts were rerouted to the 
percolation component, as indicated previously. In the field, no 
sign of ponding was observed during these intense precipitation 
events, indicating that significant runoff was unlikely to have 
occurred. However, the validation of runoff and the correspond-
ing pesticide discharge components of the SPEC model is re-
quired. In general, the SPEC model accurately predicted the soil 
water content of the TUAT experimental farm for the duration 
of monitoring (Fig. 2). The sensor used to record the soil water 
content failed starting on the March 5, 2014 (Fig. 2). Conse-
quently, the evaluation of the model is based on recording prior 
to the sensor’s failure.

Two scenarios were used to simulate the soil water content. 
In the first scenario, a constant value for ET (0.1 cm/day) was 

used during the entire simulation period (dotted line in Fig. 2). 
In contrast, for the second scenario, daily ETs computed by the 
Penman-Monteith algorithm were used in the model (solid line 
in Fig. 2). The effect of ET on the simulated soil water content 
was particularly clear during the winter season (Fig. 2). Indeed, 
the default ET value (0.1 cm/day) seems to be too high during 
the winter season (dotted line in Fig. 2). The average ETs calcu-
lated using the Penman–Monteith method were 0.1 and 0.06 cm/
day for the summer and winter seasons, respectively. As a result, 
too much water is removed from the soil, which results in the 
underestimation of soil water content during this period. In con-
trast, using daily ET values greatly improved the accuracy of the 
simulations of soil water content.

The statistical evaluations of the SPEC model for the two sce-
narios are reported in Table 2. The CRM statistic indicates that the 
model has a slight tendency to overestimate the soil water content. 
The NSE, and RMSE statistics were similar for the two scenarios 
using constant and daily ET values. In contrast, the R2 value in-
creased significantly for the simulation using daily ET values. In-
deed, the high linear relationship between the predicted and ob-
served soil water content can be observed graphically in Fig. 2. 
While the predicted daily soil water content values did not always 
match the observed values, the general trend of the observations 
is very well captured by the model’s simulation. In general, regard-
ing the number of observation points (n=269), the temporal and 
spatial variations of the observed water contents and the daily pre-
dictions for both scenarios were classified as good.

2.  Model validation for the prediction of atrazine and metola-
chlor concentrations

Atrazine and metolachlor concentrations were simulated from 
June 10, 2013 to May 5, 2014, using the input parameter val-
ues reported in Table 1 and the scenarios for constant and daily 
ET values. The deterministic simulations using the daily ET val-
ues are reported in Fig. 3 while the statistical evaluations of the 
model for both scenarios are reported in Table 2. The predicted 

Fig.  2.	 Predicted and observed daily water content in 5-cm deep soil at TUAT experimental farm from 10 June 2013 to 5 May 2014. The grey band indi-
cates the 95th percentile confidence interval of the predicted soil water content acquire from the MC simulation 1.
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herbicide concentrations for the two ET scenarios were similar, 
since the statistical evaluations of the two scenarios yield similar 
statistics for atrazine and metolachlor (Table 2). The model was 
flagged by the CRM statistics as slightly underestimating atra-
zine concentrations and overestimating metolachlor concentra-
tions. Those trends were also confirmed by a visual inspection of 
the deterministic simulations of atrazine and metolachlor (Fig. 
3). Nevertheless, the predicted herbicide concentrations are in 
range of the observations. Moreover, the NSE was positive for 
all scenarios while the R2 was higher than 0.90 for all scenarios. 
Thus, the model accurately simulated atrazine and metolachlor 
concentrations on the TUAT experimental farm.

The dissipation behavior of the two herbicides was differ-
ent between the summer and winter seasons as reported by the 
herbicide mass balance (Table 3). At the end of the seasons, the 
amounts of atrazine and metolachlor remaining in the soil layers 
were small. More herbicide was transported with vertical perco-
lation during the summer season due to frequent and abundant 
precipitation events as compared to the winter season (Fig. 3). 
Note that since surface runoff was prevented due to the installa-
tion of borders surrounding the plot, herbicide was only trans-
ported through vertical percolation (Eq. (1)). It was anticipated 
that more herbicide mass would be lost through degradation dur-
ing the summer season due to the effect of temperature on deg-

Fig.  3.	 Predicted and observed concentrations of atrazine (A) and metolachlor (B) in 5-cm deep soil for the 1st MC scenario (parameter related to soil 
properties). Grey bands indicate 95th percentile confidence interval.

Table  3.	 Percentage of atrazine and metolachlor dissipated by various processes as compared to herbicides applied mass for the summer and winter seasons

Processes Unit
Atrazine Metolachlor

Summer Winter Summer Winter

Biochemical degradation % 39 49 57 57
Photo-degradation % 3 5 5 7
Percolation % 58 46 39 33
Runoff % 0 0 0 0
Residual dissolved into soil-water % <0.1 <0.1 <0.1 0.1
Residual sorbed onto soil-particles % <0.1 0.2 <0.1 2

Note: Runoff simulation was disabled for this simulation.

Table  2.  Statistical evaluation of the SPEC model regarding the prediction of soil water content, atrazine and metolachlor concentrations

Outputs Water content Atrazine Metolachlor

Evapotranspiration Const. ET Daily ETs Const. ET Daily ETs Const. ET Daily ETs

R2 0.16 0.34 0.93 0.92 0.91 0.93
NSE −3.88 −1.06 0.91 0.89 0.82 0.76
RMSE 0.09 0.05 0.41 0.45 0.53 0.61
CRM 0.09 −0.003 0.12 0.07 −0.21 −0.27
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radation. However, the percentage of atrazine loss through bio-
chemical degradation during the winter season was higher than 
that of the summer season. The percentages of metolachlor loss 
through biochemical degradation in the summer and winter sea-
sons were identical (Table 3). In the winter, less atrazine was lost 
through percolation, resulting in more chemicals available for 
biochemical degradation during the winter as compared to in the 
summer (Fig. 3). The amounts of herbicides lost through photo-
degradation during the summer and winter seasons were similar.

On February 15, 2014, a 9.5-cm precipitation event caused a 
great drop in predicted herbicide concentrations due to its trans-
port through percolation bellow soil 5 cm deep (Fig. 3). How-
ever, the monitored herbicide concentrations, while decreasing, 
did not drop suddenly as the simulation had suggested. A pos-
sible explanation is that the model does not consider the effect 
of snowfall and snowmelt that occur at that time of the year. It 
was observed that snow melted gradually in the field and there-
fore, the actual amount of water that the soil received during a 
snowfall event was probably less than indicated in the data re-
corded by the logger. Note that the slight decline of observed 
herbicide concentrations due to precipitation on December 27 is 
well simulated by the model suggesting that the model’s assump-
tions are appropriate when there is no snowfall.

3.  Uncertainty analyses
The effects of input uncertainty on the predicted soil water con-
tent and herbicide concentrations were investigated using two 
MC scenarios which consisted of: (1) soil parameter inputs and 
(2) herbicide characteristic inputs. The effects of uncertainty in 
soil parameters on the predictions of soil water content are re-
ported in Fig. 2. The thickness of the 95th percentile confidence 
interval was constant through the simulation period, indicating 
that the influence of parameters’ uncertainty did not vary during 
the summer and winter seasons.

The results of the uncertainty analysis for the prediction of 

herbicide concentrations in soil are displayed in Fig. 3A, B for 
MC scenario 1 and in Fig. 4A, B for MC scenario 2, respectively. 
The effects of the soil property uncertainties on herbicide con-
centrations were consistent in the summer and winter seasons, 
as the thickness of the 95th percentile confidence interval re-
mained constant throughout the simulation period (Fig. 3A, B). 
The 95th percentile confidence interval computed for atrazine 
was greater than that for metolachlor. Since the Koc of atrazine is 
lower than that of metolachlor (Table 1), atrazine was simulated 
to be transported easily through water percolation which was 
flagged as a main route for herbicide dissipation (Table 3).

The herbicide characteristic uncertainties did not affect the 
predicted herbicide concentrations during the summer season 
(Fig. 4). In contrast, the predicted herbicide concentrations in 
the winter season were greatly affected by the herbicide char-
acteristic uncertainties, as indicated with the greater thickness 
of the 95th percentile confidence interval. The Koc parameter is 
used to predict the amount of herbicide transported with sur-
face runoff and vertical percolation (Eqs. (14)–(16)). The Q10 
parameter is used together with the soil temperature to adjust 
the half-life of the biochemical degradation of herbicides (Eqs. 
(17)–(19)). Both infiltration and temperature data were re-
ported to be significantly different between summer and winter 
seasons at the TUAT experimental farm (Table 3).24) Therefore, 
the differences in the effects of uncertainty included in herbi-
cides’ characteristics between the summer and winter seasons 
on the predicted herbicide concentrations are due to different 
combinations of the interrelated parameters of Koc and infiltra-
tion (Eqs. (14)–(16)) or Q10 and temperature (Eqs. (17)–(19)). 
This result also suggests that it is appropriate to investigate the 
sensitivity of input parameters separately for summer and winter 
datasets. Note that solar radiation data were similar for the sum-
mer and winter seasons, 13.6±6.6 and 12.9±6.8 MJ m−2, respec-
tively. Consequently, the effect of the HLphoto input’s uncertainty 
on herbicide concentrations is constant regardless of the sea-

Fig.  4.	 Predicted and observed concentrations of atrazine (A) and metolachlor (B) in 5-cm deep soil for the 2nd MC scenario (parameter related to pes-
ticide characteristics). Grey bands indicate 95th percentile confidence interval.
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son (Eq. (22)). In the SPEC model, the parameter fUS (Eq. (21)) 
was constant during the simulation period. However, in practice 
this parameter fluctuates; therefore photodegradation was likely 
overestimated during the winter season.

4.  Sensitivity analyses
Prior to the sensitivity analysis, all data generated by the MC 
simulations was assessed and showed no evidence of skewness 
or kurtosis for any of the input parameters and outputs. Conse-
quently, a stepwise regression analysis was performed using an 
SPSS software package for statistical analysis.39) There was no 
evidence that any of the input parameters exerted undue influ-
ence on the regression models. Moreover, no indication of mul-
ticollinearity (two or more highly correlated predictor variables) 
in the data was found. The standardized rank regression coef-
ficients (SRRCs) obtained using stepwise regression methodol-
ogy are presented in Tables 4 and 5 for MC scenario 1 and 2, 
respectively. SRRC values can vary from −1 to 1, and high abso-
lute values of SRRCs indicate for sensitive parameters. A positive 
SRRC indicates that increasing the parameter value will increase 
the output considered, and vice versa.

For MC scenario 1, the ranking of the sensitive parameters 
was consistent, regardless of the season (Table 4). While the “no-
runoff ” option is used, the field capacity (FC) and the saturated 
water content of the soil (SAT) were flagged as the most sensitive 
parameters regarding the prediction of soil water content. The 
SRRCs of these parameters were positive since increasing both 
parameters increases the predicted soil water content. Indeed, 
increasing the SAT and FC allows the soil to: (1) store more 
water, (2) retain more water in periods of no rainfall, and (3) 

generate less percolation (Eqs. (2) and (3)). The same parame-
ters were retained by stepwise regression methodology that uses 
herbicide concentrations as outputs. The sign of the reported 
SRRCs helps to gain some insight into the model’s behavior. In-
creasing the field capacity of the soil decreases predicted herbi-
cide concentrations. In contrast, increasing the saturated water 
content of the soil increases predicted concentrations of her-
bicide. The field capacity of the soil determines the amount of 
water that is available for infiltration (Eq. (2)) and consequently, 
increasing this parameter increases the loss of herbicide due to 
percolation. A field’s saturated water content is primarily used to 
determine the amount of percolating water (Eq. (3)). By setting 
a higher SATj value, the amount of percolating water will be re-
duced, thereby limiting the transport of herbicide.

MC scenario 2 also produced a consistent ranking of the sen-
sitive parameter. However, the season affected the ranking of the 
parameters (Table 5). For the summer season, the photodegra-
dation half-life was flagged as the most sensitive parameter. This 
result is caused by not including the biochemical degradation 
rate (kbio) in the sensitivity analysis to avoid redundancy with 
the Q10 parameter. In the summer, temperatures are close to the 
reference temperature of 25°C; consequently, the Q10 param-
eter does not impact the rate of kbio. The analysis of the mass 
balance of the two herbicides (Table 3), however revealed that 
the mass of herbicides lost through biochemical degradation is 
8 to 10 times higher than that lost through photodegradation. 
Consequently, accurate kbio parameters are absolutely crucial for 
accurately determining the fate and transport of atrazine and 
metolachlor in both summer and winter. Increasing the HLphoto 
slows the degradation of herbicide in the field, which results in 
higher herbicide concentrations in the soil. For the winter sea-
son, the Q10 was highlighted as the most sensitive parameter. 
The Q10 parameter is an indication as to what extent the half-life 
of a pesticide will deviate from its default value at 25°C when 
the temperature changes by ±10°C. Indeed, the Q10 and kbio are 
nested together (Eq. (18)), and the high sensitivity of the Q10, 
therefore, implies that the kbio has to be accurately determined 
to accurately predict herbicide concentrations (Table 3). In ad-
dition, there is limited information about Q10 values for pesti-
cide; this was reflected in the parameter’s rather wide range (1 to 
2.2) which also contributed to the high overall sensitivity of the 
parameter (see Fig. 4 winter). During monitoring, the average 
temperature in the winter was 5±4°C.24) Since there is approxi-
mately a 20°C difference between the reference temperature of 
25°C and the average temperature in winter, the half-life of the 
herbicides in winter was divided by the square of the Q10 (Eq. 
(18)), resulting in much slower herbicide degradation. During 
the summer season, the temperatures were closer to the refer-
ence temperature and, thus, the Q10 did not affect predicted her-
bicide concentrations.

Conclusion

The SPEC model was developed to assess Soil-PEC (Predicted 
Environmental Concentrations in agricultural soils). The model 

Table  4.	 Standardized rank regression coefficients of the SPEC model 
parameters for the 1st MC scenario (parameter related to pesticide char-
acteristics)

Outputs Sensitive  
parameters

MC scenario 1

Summer Winter

Water content FC 0.87 0.87
SAT 0.30 0.30

Atrazine FC −0.60 −0.58
SAT 0.47 0.48

Metolachlor FC −0.62 −0.63
SAT 0.46 0.46

Table  5.	 Standardized rank regression coefficients of the SPEC model 
parameters for the 2nd MC scenario (parameter related to pesticide char-
acteristics)

Outputs Sensitive  
parameters

MC scenario 2

Summer Winter

Atrazine HLphoto 0.78 —
Q10 — 0.75

Metolachlor HLphoto 0.55 —
Q10 — 0.55
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was then validated using a field experiment carried out from 
June 10, 2013, to May 5, 2014 in which the soil water content 
and concentrations of atrazine and metolachlor were monitored. 
The soil water content predicted were accurate regarding the 
time step, and R2 and NSE statistics were equal to 0.38 and 0.22, 
respectively. The predicted atrazine and metolachlor concentra-
tions were also adequate, and the R2 and NSE statistics were high-
er than 0.91 and 0.76, respectively.

The performance of the model with uncertain inputs was inves-
tigated using the Monte Carlo technique. The model’s predictions 
were influenced constantly throughout the simulation period due 
to the uncertainty encompassed in soil properties. In contrast, 
only the predicted herbicide concentrations in the winter season 
were influenced by uncertainty arising from pesticide properties. 
While preventing surface runoff in the model, the field capac-
ity and the saturated water content of the soil were identified as 
major contributors to variation in predicted soil water content and 
herbicide concentrations. In addition, the Q10 parameter was also 
flagged as a major contributor to variation in predicted herbicide 
concentrations, especially during the winter season.

The SPEC model therefore, has the potential to accurately pre-
dict water content and pesticide concentrations in soil. Moreover, 
the detailed pesticide mass balance given by the model can be used 
to identify major dissipation pathways and evaluate the best op-
tions for improving environmental conditions associated with pes-
ticide residues in agricultural soil. Future improvements include: 
(1) the validation of the runoff component that was disabled in 
this study, (2) the creation of multiple soil layers for the improved 
prediction of soil water content, and (3) the dynamic adjustment 
of UV-B radiation over solar radiation’s dependence on environ-
mental factors for improving predictions of photodegradation.
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